KILLEDRuntime Complexity (full) proof of /tmp/tmpnctmws/hydra.xml
The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF).0 CpxTRS↳1 DecreasingLoopProof (⇔, 92 ms)↳2 BOUNDS(n^1, INF)↳3 RenamingProof (⇔, 0 ms)↳4 CpxRelTRS↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)↳6 typed CpxTrs↳7 OrderProof (LOWER BOUND(ID), 0 ms)↳8 typed CpxTrs(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))
Rewrite Strategy: FULL(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
copy(s(x), y, z) →+ copy(x, y, cons(f(y), z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x)].
The result substitution is [z / cons(f(y), z)].(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0', y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))
S is empty.
Rewrite Strategy: FULL(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.(6) Obligation:
TRS:
Rules:
f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0', y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))
Types:
f :: nil:cons → nil:cons
cons :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
copy :: n:0':s → nil:cons → nil:cons → nil:cons
n :: n:0':s
0' :: n:0':s
s :: n:0':s → n:0':s
hole_nil:cons1_0 :: nil:cons
hole_n:0':s2_0 :: n:0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_n:0':s4_0 :: Nat → n:0':s(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f, copyThey will be analysed ascendingly in the following order:
f = copy(8) Obligation:
TRS:
Rules:
f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0', y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))
Types:
f :: nil:cons → nil:cons
cons :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
copy :: n:0':s → nil:cons → nil:cons → nil:cons
n :: n:0':s
0' :: n:0':s
s :: n:0':s → n:0':s
hole_nil:cons1_0 :: nil:cons
hole_n:0':s2_0 :: n:0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_n:0':s4_0 :: Nat → n:0':sGenerator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(nil, gen_nil:cons3_0(x))
gen_n:0':s4_0(0) ⇔ 0'
gen_n:0':s4_0(+(x, 1)) ⇔ s(gen_n:0':s4_0(x))The following defined symbols remain to be analysed:
copy, fThey will be analysed ascendingly in the following order:
f = copy